{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
#if __GLASGOW_HASKELL__ >= 704
{-# LANGUAGE Safe #-}
#elif __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#if !(MIN_VERSION_transformers(0,6,0))
{-# OPTIONS_GHC -fno-warn-deprecations #-}
#endif
module Data.Functor.Contravariant.Divisible
(
Divisible(..), divided, conquered, liftD
, Decidable(..), chosen, lost
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Arrow
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Contravariant
import Data.Functor.Product
import Data.Functor.Reverse
import Data.Void
#if !(MIN_VERSION_transformers(0,6,0))
import Control.Monad.Trans.Error
import Control.Monad.Trans.List
import Data.Either
#endif
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#else
import Data.Monoid (Monoid(..))
#endif
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
import Data.Proxy
#endif
#ifdef MIN_VERSION_StateVar
import Data.StateVar
#endif
#if __GLASGOW_HASKELL__ >= 702
#define GHC_GENERICS
import GHC.Generics
#endif
class Contravariant f => Divisible f where
divide :: (a -> (b, c)) -> f b -> f c -> f a
conquer :: f a
divided :: Divisible f => f a -> f b -> f (a, b)
divided :: forall (f :: * -> *) a b. Divisible f => f a -> f b -> f (a, b)
divided = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide forall a. a -> a
id
conquered :: Divisible f => f ()
conquered :: forall (f :: * -> *). Divisible f => f ()
conquered = forall (f :: * -> *) a. Divisible f => f a
conquer
liftD :: Divisible f => (a -> b) -> f b -> f a
liftD :: forall (f :: * -> *) a b. Divisible f => (a -> b) -> f b -> f a
liftD a -> b
f = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide ((,) () forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f) forall (f :: * -> *) a. Divisible f => f a
conquer
instance Monoid r => Divisible (Op r) where
divide :: forall a b c. (a -> (b, c)) -> Op r b -> Op r c -> Op r a
divide a -> (b, c)
f (Op b -> r
g) (Op c -> r
h) = forall a b. (b -> a) -> Op a b
Op forall a b. (a -> b) -> a -> b
$ \a
a -> case a -> (b, c)
f a
a of
(b
b, c
c) -> b -> r
g b
b forall a. Monoid a => a -> a -> a
`mappend` c -> r
h c
c
conquer :: forall a. Op r a
conquer = forall a b. (b -> a) -> Op a b
Op forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const forall a. Monoid a => a
mempty
instance Divisible Comparison where
divide :: forall a b c.
(a -> (b, c)) -> Comparison b -> Comparison c -> Comparison a
divide a -> (b, c)
f (Comparison b -> b -> Ordering
g) (Comparison c -> c -> Ordering
h) = forall a. (a -> a -> Ordering) -> Comparison a
Comparison forall a b. (a -> b) -> a -> b
$ \a
a a
b -> case a -> (b, c)
f a
a of
(b
a',c
a'') -> case a -> (b, c)
f a
b of
(b
b',c
b'') -> b -> b -> Ordering
g b
a' b
b' forall a. Monoid a => a -> a -> a
`mappend` c -> c -> Ordering
h c
a'' c
b''
conquer :: forall a. Comparison a
conquer = forall a. (a -> a -> Ordering) -> Comparison a
Comparison forall a b. (a -> b) -> a -> b
$ \a
_ a
_ -> Ordering
EQ
instance Divisible Equivalence where
divide :: forall a b c.
(a -> (b, c)) -> Equivalence b -> Equivalence c -> Equivalence a
divide a -> (b, c)
f (Equivalence b -> b -> Bool
g) (Equivalence c -> c -> Bool
h) = forall a. (a -> a -> Bool) -> Equivalence a
Equivalence forall a b. (a -> b) -> a -> b
$ \a
a a
b -> case a -> (b, c)
f a
a of
(b
a',c
a'') -> case a -> (b, c)
f a
b of
(b
b',c
b'') -> b -> b -> Bool
g b
a' b
b' Bool -> Bool -> Bool
&& c -> c -> Bool
h c
a'' c
b''
conquer :: forall a. Equivalence a
conquer = forall a. (a -> a -> Bool) -> Equivalence a
Equivalence forall a b. (a -> b) -> a -> b
$ \a
_ a
_ -> Bool
True
instance Divisible Predicate where
divide :: forall a b c.
(a -> (b, c)) -> Predicate b -> Predicate c -> Predicate a
divide a -> (b, c)
f (Predicate b -> Bool
g) (Predicate c -> Bool
h) = forall a. (a -> Bool) -> Predicate a
Predicate forall a b. (a -> b) -> a -> b
$ \a
a -> case a -> (b, c)
f a
a of
(b
b, c
c) -> b -> Bool
g b
b Bool -> Bool -> Bool
&& c -> Bool
h c
c
conquer :: forall a. Predicate a
conquer = forall a. (a -> Bool) -> Predicate a
Predicate forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const Bool
True
instance Monoid m => Divisible (Const m) where
divide :: forall a b c. (a -> (b, c)) -> Const m b -> Const m c -> Const m a
divide a -> (b, c)
_ (Const m
a) (Const m
b) = forall {k} a (b :: k). a -> Const a b
Const (forall a. Monoid a => a -> a -> a
mappend m
a m
b)
conquer :: forall a. Const m a
conquer = forall {k} a (b :: k). a -> Const a b
Const forall a. Monoid a => a
mempty
#if MIN_VERSION_base(4,8,0)
instance Divisible f => Divisible (Alt f) where
divide :: forall a b c. (a -> (b, c)) -> Alt f b -> Alt f c -> Alt f a
divide a -> (b, c)
f (Alt f b
l) (Alt f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l f c
r
conquer :: forall a. Alt f a
conquer = forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt forall (f :: * -> *) a. Divisible f => f a
conquer
#endif
#ifdef GHC_GENERICS
instance Divisible U1 where
divide :: forall a b c. (a -> (b, c)) -> U1 b -> U1 c -> U1 a
divide a -> (b, c)
_ U1 b
U1 U1 c
U1 = forall k (p :: k). U1 p
U1
conquer :: forall a. U1 a
conquer = forall k (p :: k). U1 p
U1
instance Divisible f => Divisible (Rec1 f) where
divide :: forall a b c. (a -> (b, c)) -> Rec1 f b -> Rec1 f c -> Rec1 f a
divide a -> (b, c)
f (Rec1 f b
l) (Rec1 f c
r) = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l f c
r
conquer :: forall a. Rec1 f a
conquer = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible f => Divisible (M1 i c f) where
divide :: forall a b c.
(a -> (b, c)) -> M1 i c f b -> M1 i c f c -> M1 i c f a
divide a -> (b, c)
f (M1 f b
l) (M1 f c
r) = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l f c
r
conquer :: forall a. M1 i c f a
conquer = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall (f :: * -> *) a. Divisible f => f a
conquer
instance (Divisible f, Divisible g) => Divisible (f :*: g) where
divide :: forall a b c.
(a -> (b, c)) -> (:*:) f g b -> (:*:) f g c -> (:*:) f g a
divide a -> (b, c)
f (f b
l1 :*: g b
r1) (f c
l2 :*: g c
r2) = forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l1 f c
l2 forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f g b
r1 g c
r2
conquer :: forall a. (:*:) f g a
conquer = forall (f :: * -> *) a. Divisible f => f a
conquer forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a. Divisible f => f a
conquer
instance (Applicative f, Divisible g) => Divisible (f :.: g) where
divide :: forall a b c.
(a -> (b, c)) -> (:.:) f g b -> (:.:) f g c -> (:.:) f g a
divide a -> (b, c)
f (Comp1 f (g b)
l) (Comp1 f (g c)
r) = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (g b)
l forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (g c)
r)
conquer :: forall a. (:.:) f g a
conquer = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a. Applicative f => a -> f a
pure forall (f :: * -> *) a. Divisible f => f a
conquer
#endif
instance Divisible f => Divisible (Backwards f) where
divide :: forall a b c.
(a -> (b, c)) -> Backwards f b -> Backwards f c -> Backwards f a
divide a -> (b, c)
f (Backwards f b
l) (Backwards f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l f c
r
conquer :: forall a. Backwards f a
conquer = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (ExceptT e m) where
divide :: forall a b c.
(a -> (b, c)) -> ExceptT e m b -> ExceptT e m c -> ExceptT e m a
divide a -> (b, c)
f (ExceptT m (Either e b)
l) (ExceptT m (Either e c)
r) = forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Either e b)
l m (Either e c)
r
conquer :: forall a. ExceptT e m a
conquer = forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible f => Divisible (IdentityT f) where
divide :: forall a b c.
(a -> (b, c)) -> IdentityT f b -> IdentityT f c -> IdentityT f a
divide a -> (b, c)
f (IdentityT f b
l) (IdentityT f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l f c
r
conquer :: forall a. IdentityT f a
conquer = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (MaybeT m) where
divide :: forall a b c.
(a -> (b, c)) -> MaybeT m b -> MaybeT m c -> MaybeT m a
divide a -> (b, c)
f (MaybeT m (Maybe b)
l) (MaybeT m (Maybe c)
r) = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Maybe b)
l m (Maybe c)
r
conquer :: forall a. MaybeT m a
conquer = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (ReaderT r m) where
divide :: forall a b c.
(a -> (b, c)) -> ReaderT r m b -> ReaderT r m c -> ReaderT r m a
divide a -> (b, c)
abc (ReaderT r -> m b
rmb) (ReaderT r -> m c
rmc) = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \r
r -> forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
abc (r -> m b
rmb r
r) (r -> m c
rmc r
r)
conquer :: forall a. ReaderT r m a
conquer = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \r
_ -> forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (Lazy.RWST r w s m) where
divide :: forall a b c.
(a -> (b, c)) -> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
divide a -> (b, c)
abc (Lazy.RWST r -> s -> m (b, s, w)
rsmb) (Lazy.RWST r -> s -> m (c, s, w)
rsmc) = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (\ ~(a
a, s
s', w
w) -> case a -> (b, c)
abc a
a of
~(b
b, c
c) -> ((b
b, s
s', w
w), (c
c, s
s', w
w)))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
conquer :: forall a. RWST r w s m a
conquer = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ -> forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (Strict.RWST r w s m) where
divide :: forall a b c.
(a -> (b, c)) -> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
divide a -> (b, c)
abc (Strict.RWST r -> s -> m (b, s, w)
rsmb) (Strict.RWST r -> s -> m (c, s, w)
rsmc) = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (\(a
a, s
s', w
w) -> case a -> (b, c)
abc a
a of
(b
b, c
c) -> ((b
b, s
s', w
w), (c
c, s
s', w
w)))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
conquer :: forall a. RWST r w s m a
conquer = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ -> forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (Lazy.StateT s m) where
divide :: forall a b c.
(a -> (b, c)) -> StateT s m b -> StateT s m c -> StateT s m a
divide a -> (b, c)
f (Lazy.StateT s -> m (b, s)
l) (Lazy.StateT s -> m (c, s)
r) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f) (s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
conquer :: forall a. StateT s m a
conquer = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \s
_ -> forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (Strict.StateT s m) where
divide :: forall a b c.
(a -> (b, c)) -> StateT s m b -> StateT s m c -> StateT s m a
divide a -> (b, c)
f (Strict.StateT s -> m (b, s)
l) (Strict.StateT s -> m (c, s)
r) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f) (s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
conquer :: forall a. StateT s m a
conquer = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \s
_ -> forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (Lazy.WriterT w m) where
divide :: forall a b c.
(a -> (b, c)) -> WriterT w m b -> WriterT w m c -> WriterT w m a
divide a -> (b, c)
f (Lazy.WriterT m (b, w)
l) (Lazy.WriterT m (c, w)
r) = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f) m (b, w)
l m (c, w)
r
conquer :: forall a. WriterT w m a
conquer = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (Strict.WriterT w m) where
divide :: forall a b c.
(a -> (b, c)) -> WriterT w m b -> WriterT w m c -> WriterT w m a
divide a -> (b, c)
f (Strict.WriterT m (b, w)
l) (Strict.WriterT m (c, w)
r) = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f) m (b, w)
l m (c, w)
r
conquer :: forall a. WriterT w m a
conquer = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall (f :: * -> *) a. Divisible f => f a
conquer
instance (Applicative f, Divisible g) => Divisible (Compose f g) where
divide :: forall a b c.
(a -> (b, c)) -> Compose f g b -> Compose f g c -> Compose f g a
divide a -> (b, c)
f (Compose f (g b)
l) (Compose f (g c)
r) = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (g b)
l forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (g c)
r)
conquer :: forall a. Compose f g a
conquer = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a. Applicative f => a -> f a
pure forall (f :: * -> *) a. Divisible f => f a
conquer
instance Monoid m => Divisible (Constant m) where
divide :: forall a b c.
(a -> (b, c)) -> Constant m b -> Constant m c -> Constant m a
divide a -> (b, c)
_ (Constant m
l) (Constant m
r) = forall {k} a (b :: k). a -> Constant a b
Constant forall a b. (a -> b) -> a -> b
$ forall a. Monoid a => a -> a -> a
mappend m
l m
r
conquer :: forall a. Constant m a
conquer = forall {k} a (b :: k). a -> Constant a b
Constant forall a. Monoid a => a
mempty
instance (Divisible f, Divisible g) => Divisible (Product f g) where
divide :: forall a b c.
(a -> (b, c)) -> Product f g b -> Product f g c -> Product f g a
divide a -> (b, c)
f (Pair f b
l1 g b
r1) (Pair f c
l2 g c
r2) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l1 f c
l2) (forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f g b
r1 g c
r2)
conquer :: forall a. Product f g a
conquer = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair forall (f :: * -> *) a. Divisible f => f a
conquer forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible f => Divisible (Reverse f) where
divide :: forall a b c.
(a -> (b, c)) -> Reverse f b -> Reverse f c -> Reverse f a
divide a -> (b, c)
f (Reverse f b
l) (Reverse f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide a -> (b, c)
f f b
l f c
r
conquer :: forall a. Reverse f a
conquer = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse forall (f :: * -> *) a. Divisible f => f a
conquer
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
instance Divisible Proxy where
divide :: forall a b c. (a -> (b, c)) -> Proxy b -> Proxy c -> Proxy a
divide a -> (b, c)
_ Proxy b
Proxy Proxy c
Proxy = forall {k} (t :: k). Proxy t
Proxy
conquer :: forall a. Proxy a
conquer = forall {k} (t :: k). Proxy t
Proxy
#endif
#ifdef MIN_VERSION_StateVar
instance Divisible SettableStateVar where
divide :: forall a b c.
(a -> (b, c))
-> SettableStateVar b -> SettableStateVar c -> SettableStateVar a
divide a -> (b, c)
k (SettableStateVar b -> IO ()
l) (SettableStateVar c -> IO ()
r) = forall a. (a -> IO ()) -> SettableStateVar a
SettableStateVar forall a b. (a -> b) -> a -> b
$ \ a
a -> case a -> (b, c)
k a
a of
(b
b, c
c) -> b -> IO ()
l b
b forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> c -> IO ()
r c
c
conquer :: forall a. SettableStateVar a
conquer = forall a. (a -> IO ()) -> SettableStateVar a
SettableStateVar forall a b. (a -> b) -> a -> b
$ \a
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
#endif
lazyFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout :: forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
lazyFanout a -> (b, c)
f ~(a
a, s
s) = case a -> (b, c)
f a
a of
~(b
b, c
c) -> ((b
b, s
s), (c
c, s
s))
strictFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout :: forall a b c s. (a -> (b, c)) -> (a, s) -> ((b, s), (c, s))
strictFanout a -> (b, c)
f (a
a, s
s) = case a -> (b, c)
f a
a of
(b
b, c
c) -> ((b
b, s
s), (c
c, s
s))
funzip :: Functor f => f (a, b) -> (f a, f b)
funzip :: forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst forall (a :: * -> * -> *) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> b
snd
class Divisible f => Decidable f where
lose :: (a -> Void) -> f a
choose :: (a -> Either b c) -> f b -> f c -> f a
lost :: Decidable f => f Void
lost :: forall (f :: * -> *). Decidable f => f Void
lost = forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose forall a. a -> a
id
chosen :: Decidable f => f b -> f c -> f (Either b c)
chosen :: forall (f :: * -> *) b c.
Decidable f =>
f b -> f c -> f (Either b c)
chosen = forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose forall a. a -> a
id
instance Decidable Comparison where
lose :: forall a. (a -> Void) -> Comparison a
lose a -> Void
f = forall a. (a -> a -> Ordering) -> Comparison a
Comparison forall a b. (a -> b) -> a -> b
$ \a
a a
_ -> forall a. Void -> a
absurd (a -> Void
f a
a)
choose :: forall a b c.
(a -> Either b c) -> Comparison b -> Comparison c -> Comparison a
choose a -> Either b c
f (Comparison b -> b -> Ordering
g) (Comparison c -> c -> Ordering
h) = forall a. (a -> a -> Ordering) -> Comparison a
Comparison forall a b. (a -> b) -> a -> b
$ \a
a a
b -> case a -> Either b c
f a
a of
Left b
c -> case a -> Either b c
f a
b of
Left b
d -> b -> b -> Ordering
g b
c b
d
Right{} -> Ordering
LT
Right c
c -> case a -> Either b c
f a
b of
Left{} -> Ordering
GT
Right c
d -> c -> c -> Ordering
h c
c c
d
instance Decidable Equivalence where
lose :: forall a. (a -> Void) -> Equivalence a
lose a -> Void
f = forall a. (a -> a -> Bool) -> Equivalence a
Equivalence forall a b. (a -> b) -> a -> b
$ forall a. Void -> a
absurd forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Void
f
choose :: forall a b c.
(a -> Either b c)
-> Equivalence b -> Equivalence c -> Equivalence a
choose a -> Either b c
f (Equivalence b -> b -> Bool
g) (Equivalence c -> c -> Bool
h) = forall a. (a -> a -> Bool) -> Equivalence a
Equivalence forall a b. (a -> b) -> a -> b
$ \a
a a
b -> case a -> Either b c
f a
a of
Left b
c -> case a -> Either b c
f a
b of
Left b
d -> b -> b -> Bool
g b
c b
d
Right{} -> Bool
False
Right c
c -> case a -> Either b c
f a
b of
Left{} -> Bool
False
Right c
d -> c -> c -> Bool
h c
c c
d
instance Decidable Predicate where
lose :: forall a. (a -> Void) -> Predicate a
lose a -> Void
f = forall a. (a -> Bool) -> Predicate a
Predicate forall a b. (a -> b) -> a -> b
$ forall a. Void -> a
absurd forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Void
f
choose :: forall a b c.
(a -> Either b c) -> Predicate b -> Predicate c -> Predicate a
choose a -> Either b c
f (Predicate b -> Bool
g) (Predicate c -> Bool
h) = forall a. (a -> Bool) -> Predicate a
Predicate forall a b. (a -> b) -> a -> b
$ forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either b -> Bool
g c -> Bool
h forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f
instance Monoid r => Decidable (Op r) where
lose :: forall a. (a -> Void) -> Op r a
lose a -> Void
f = forall a b. (b -> a) -> Op a b
Op forall a b. (a -> b) -> a -> b
$ forall a. Void -> a
absurd forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Void
f
choose :: forall a b c. (a -> Either b c) -> Op r b -> Op r c -> Op r a
choose a -> Either b c
f (Op b -> r
g) (Op c -> r
h) = forall a b. (b -> a) -> Op a b
Op forall a b. (a -> b) -> a -> b
$ forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either b -> r
g c -> r
h forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f
#if MIN_VERSION_base(4,8,0)
instance Decidable f => Decidable (Alt f) where
lose :: forall a. (a -> Void) -> Alt f a
lose = forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c. (a -> Either b c) -> Alt f b -> Alt f c -> Alt f a
choose a -> Either b c
f (Alt f b
l) (Alt f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Alt forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l f c
r
#endif
#ifdef GHC_GENERICS
instance Decidable U1 where
lose :: forall a. (a -> Void) -> U1 a
lose a -> Void
_ = forall k (p :: k). U1 p
U1
choose :: forall a b c. (a -> Either b c) -> U1 b -> U1 c -> U1 a
choose a -> Either b c
_ U1 b
U1 U1 c
U1 = forall k (p :: k). U1 p
U1
instance Decidable f => Decidable (Rec1 f) where
lose :: forall a. (a -> Void) -> Rec1 f a
lose = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c. (a -> Either b c) -> Rec1 f b -> Rec1 f c -> Rec1 f a
choose a -> Either b c
f (Rec1 f b
l) (Rec1 f c
r) = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l f c
r
instance Decidable f => Decidable (M1 i c f) where
lose :: forall a. (a -> Void) -> M1 i c f a
lose = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c.
(a -> Either b c) -> M1 i c f b -> M1 i c f c -> M1 i c f a
choose a -> Either b c
f (M1 f b
l) (M1 f c
r) = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l f c
r
instance (Decidable f, Decidable g) => Decidable (f :*: g) where
lose :: forall a. (a -> Void) -> (:*:) f g a
lose a -> Void
f = forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f
choose :: forall a b c.
(a -> Either b c) -> (:*:) f g b -> (:*:) f g c -> (:*:) f g a
choose a -> Either b c
f (f b
l1 :*: g b
r1) (f c
l2 :*: g c
r2) = forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l1 f c
l2 forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f g b
r1 g c
r2
instance (Applicative f, Decidable g) => Decidable (f :.: g) where
lose :: forall a. (a -> Void) -> (:.:) f g a
lose = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c.
(a -> Either b c) -> (:.:) f g b -> (:.:) f g c -> (:.:) f g a
choose a -> Either b c
f (Comp1 f (g b)
l) (Comp1 f (g c)
r) = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 (forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (g b)
l forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (g c)
r)
#endif
instance Decidable f => Decidable (Backwards f) where
lose :: forall a. (a -> Void) -> Backwards f a
lose = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c.
(a -> Either b c)
-> Backwards f b -> Backwards f c -> Backwards f a
choose a -> Either b c
f (Backwards f b
l) (Backwards f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l f c
r
instance Decidable f => Decidable (IdentityT f) where
lose :: forall a. (a -> Void) -> IdentityT f a
lose = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c.
(a -> Either b c)
-> IdentityT f b -> IdentityT f c -> IdentityT f a
choose a -> Either b c
f (IdentityT f b
l) (IdentityT f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l f c
r
instance Decidable m => Decidable (ReaderT r m) where
lose :: forall a. (a -> Void) -> ReaderT r m a
lose a -> Void
f = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \r
_ -> forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f
choose :: forall a b c.
(a -> Either b c)
-> ReaderT r m b -> ReaderT r m c -> ReaderT r m a
choose a -> Either b c
abc (ReaderT r -> m b
rmb) (ReaderT r -> m c
rmc) = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \r
r -> forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
abc (r -> m b
rmb r
r) (r -> m c
rmc r
r)
instance Decidable m => Decidable (Lazy.RWST r w s m) where
lose :: forall a. (a -> Void) -> RWST r w s m a
lose a -> Void
f = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ -> forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap (\ ~(a
a, s
_, w
_) -> a
a) (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c)
-> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
choose a -> Either b c
abc (Lazy.RWST r -> s -> m (b, s, w)
rsmb) (Lazy.RWST r -> s -> m (c, s, w)
rsmc) = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose (\ ~(a
a, s
s', w
w) -> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall a b. a -> Either a b
Left forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
(forall a b. b -> Either a b
Right forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
(a -> Either b c
abc a
a))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
instance Decidable m => Decidable (Strict.RWST r w s m) where
lose :: forall a. (a -> Void) -> RWST r w s m a
lose a -> Void
f = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
_ s
_ -> forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap (\(a
a, s
_, w
_) -> a
a) (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c)
-> RWST r w s m b -> RWST r w s m c -> RWST r w s m a
choose a -> Either b c
abc (Strict.RWST r -> s -> m (b, s, w)
rsmb) (Strict.RWST r -> s -> m (c, s, w)
rsmc) = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose (\(a
a, s
s', w
w) -> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall a b. a -> Either a b
Left forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
(forall a b. b -> Either a b
Right forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s' w
w)
(a -> Either b c
abc a
a))
(r -> s -> m (b, s, w)
rsmb r
r s
s) (r -> s -> m (c, s, w)
rsmc r
r s
s)
#if !(MIN_VERSION_transformers(0,6,0))
instance Divisible m => Divisible (ErrorT e m) where
divide :: forall a b c.
(a -> (b, c)) -> ErrorT e m b -> ErrorT e m c -> ErrorT e m a
divide a -> (b, c)
f (ErrorT m (Either e b)
l) (ErrorT m (Either e c)
r) = forall e (m :: * -> *) a. m (Either e a) -> ErrorT e m a
ErrorT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> (b, c)
f) m (Either e b)
l m (Either e c)
r
conquer :: forall a. ErrorT e m a
conquer = forall e (m :: * -> *) a. m (Either e a) -> ErrorT e m a
ErrorT forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Divisible (ListT m) where
divide :: forall a b c. (a -> (b, c)) -> ListT m b -> ListT m c -> ListT m a
divide a -> (b, c)
f (ListT m [b]
l) (ListT m [c]
r) = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide (forall (f :: * -> *) a b. Functor f => f (a, b) -> (f a, f b)
funzip forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map a -> (b, c)
f) m [b]
l m [c]
r
conquer :: forall a. ListT m a
conquer = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall (f :: * -> *) a. Divisible f => f a
conquer
instance Divisible m => Decidable (ListT m) where
lose :: forall a. (a -> Void) -> ListT m a
lose a -> Void
_ = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall (f :: * -> *) a. Divisible f => f a
conquer
choose :: forall a b c.
(a -> Either b c) -> ListT m b -> ListT m c -> ListT m a
choose a -> Either b c
f (ListT m [b]
l) (ListT m [c]
r) = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide ((forall a b. [Either a b] -> [a]
lefts forall (a :: * -> * -> *) b c c'.
Arrow a =>
a b c -> a b c' -> a b (c, c')
&&& forall a b. [Either a b] -> [b]
rights) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map a -> Either b c
f) m [b]
l m [c]
r
#endif
instance Divisible m => Decidable (MaybeT m) where
lose :: forall a. (a -> Void) -> MaybeT m a
lose a -> Void
_ = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall (f :: * -> *) a. Divisible f => f a
conquer
choose :: forall a b c.
(a -> Either b c) -> MaybeT m b -> MaybeT m c -> MaybeT m a
choose a -> Either b c
f (MaybeT m (Maybe b)
l) (MaybeT m (Maybe c)
r) = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Divisible f =>
(a -> (b, c)) -> f b -> f c -> f a
divide ( forall b a. b -> (a -> b) -> Maybe a -> b
maybe (forall a. Maybe a
Nothing, forall a. Maybe a
Nothing)
(forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (\b
b -> (forall a. a -> Maybe a
Just b
b, forall a. Maybe a
Nothing))
(\c
c -> (forall a. Maybe a
Nothing, forall a. a -> Maybe a
Just c
c)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f)
) m (Maybe b)
l m (Maybe c)
r
instance Decidable m => Decidable (Lazy.StateT s m) where
lose :: forall a. (a -> Void) -> StateT s m a
lose a -> Void
f = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \s
_ -> forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap forall a b. (a, b) -> a
lazyFst (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c) -> StateT s m b -> StateT s m c -> StateT s m a
choose a -> Either b c
f (Lazy.StateT s -> m (b, s)
l) (Lazy.StateT s -> m (c, s)
r) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose (\ ~(a
a, s
s') -> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall a b. a -> Either a b
Left forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple s
s') (forall a b. b -> Either a b
Right forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple s
s') (a -> Either b c
f a
a))
(s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Decidable m => Decidable (Strict.StateT s m) where
lose :: forall a. (a -> Void) -> StateT s m a
lose a -> Void
f = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \s
_ -> forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap forall a b. (a, b) -> a
fst (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c) -> StateT s m b -> StateT s m c -> StateT s m a
choose a -> Either b c
f (Strict.StateT s -> m (b, s)
l) (Strict.StateT s -> m (c, s)
r) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose (\(a
a, s
s') -> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall a b. a -> Either a b
Left forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple s
s') (forall a b. b -> Either a b
Right forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple s
s') (a -> Either b c
f a
a))
(s -> m (b, s)
l s
s) (s -> m (c, s)
r s
s)
instance Decidable m => Decidable (Lazy.WriterT w m) where
lose :: forall a. (a -> Void) -> WriterT w m a
lose a -> Void
f = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap forall a b. (a, b) -> a
lazyFst (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c)
-> WriterT w m b -> WriterT w m c -> WriterT w m a
choose a -> Either b c
f (Lazy.WriterT m (b, w)
l) (Lazy.WriterT m (c, w)
r) = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose (\ ~(a
a, w
s') -> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall a b. a -> Either a b
Left forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple w
s') (forall a b. b -> Either a b
Right forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple w
s') (a -> Either b c
f a
a)) m (b, w)
l m (c, w)
r
instance Decidable m => Decidable (Strict.WriterT w m) where
lose :: forall a. (a -> Void) -> WriterT w m a
lose a -> Void
f = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a' a.
Contravariant f =>
(a' -> a) -> f a -> f a'
contramap forall a b. (a, b) -> a
fst (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c)
-> WriterT w m b -> WriterT w m c -> WriterT w m a
choose a -> Either b c
f (Strict.WriterT m (b, w)
l) (Strict.WriterT m (c, w)
r) = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall a b. (a -> b) -> a -> b
$
forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose (\(a
a, w
s') -> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall a b. a -> Either a b
Left forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple w
s') (forall a b. b -> Either a b
Right forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s a. s -> a -> (a, s)
betuple w
s') (a -> Either b c
f a
a)) m (b, w)
l m (c, w)
r
instance (Applicative f, Decidable g) => Decidable (Compose f g) where
lose :: forall a. (a -> Void) -> Compose f g a
lose = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c.
(a -> Either b c)
-> Compose f g b -> Compose f g c -> Compose f g a
choose a -> Either b c
f (Compose f (g b)
l) (Compose f (g c)
r) = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (g b)
l forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (g c)
r)
instance (Decidable f, Decidable g) => Decidable (Product f g) where
lose :: forall a. (a -> Void) -> Product f g a
lose a -> Void
f = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f) (forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose a -> Void
f)
choose :: forall a b c.
(a -> Either b c)
-> Product f g b -> Product f g c -> Product f g a
choose a -> Either b c
f (Pair f b
l1 g b
r1) (Pair f c
l2 g c
r2) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l1 f c
l2) (forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f g b
r1 g c
r2)
instance Decidable f => Decidable (Reverse f) where
lose :: forall a. (a -> Void) -> Reverse f a
lose = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Decidable f => (a -> Void) -> f a
lose
choose :: forall a b c.
(a -> Either b c) -> Reverse f b -> Reverse f c -> Reverse f a
choose a -> Either b c
f (Reverse f b
l) (Reverse f c
r) = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b c.
Decidable f =>
(a -> Either b c) -> f b -> f c -> f a
choose a -> Either b c
f f b
l f c
r
betuple :: s -> a -> (a, s)
betuple :: forall s a. s -> a -> (a, s)
betuple s
s a
a = (a
a, s
s)
betuple3 :: s -> w -> a -> (a, s, w)
betuple3 :: forall s w a. s -> w -> a -> (a, s, w)
betuple3 s
s w
w a
a = (a
a, s
s, w
w)
lazyFst :: (a, b) -> a
lazyFst :: forall a b. (a, b) -> a
lazyFst ~(a
a, b
_) = a
a
#if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged)
instance Decidable Proxy where
lose :: forall a. (a -> Void) -> Proxy a
lose a -> Void
_ = forall {k} (t :: k). Proxy t
Proxy
choose :: forall a b c. (a -> Either b c) -> Proxy b -> Proxy c -> Proxy a
choose a -> Either b c
_ Proxy b
Proxy Proxy c
Proxy = forall {k} (t :: k). Proxy t
Proxy
#endif
#ifdef MIN_VERSION_StateVar
instance Decidable SettableStateVar where
lose :: forall a. (a -> Void) -> SettableStateVar a
lose a -> Void
k = forall a. (a -> IO ()) -> SettableStateVar a
SettableStateVar (forall a. Void -> a
absurd forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Void
k)
choose :: forall a b c.
(a -> Either b c)
-> SettableStateVar b -> SettableStateVar c -> SettableStateVar a
choose a -> Either b c
k (SettableStateVar b -> IO ()
l) (SettableStateVar c -> IO ()
r) = forall a. (a -> IO ()) -> SettableStateVar a
SettableStateVar forall a b. (a -> b) -> a -> b
$ \ a
a -> case a -> Either b c
k a
a of
Left b
b -> b -> IO ()
l b
b
Right c
c -> c -> IO ()
r c
c
#endif